

Agile Core Documentation

Agile Core is a collection of PHP Traits for designing object-oriented
frameworks. The main purpose for this project is to work as a foundation for
[Agile UI](https://github.com/atk4/ui) and [Agile Data](https://github.com/atk4/data),
but you are welcome to use some or all traits elsewhere.

Object Containers

[image: _images/containers.png]

Within your application or framework you can quite often have requirement for
using containers:

	Form containing fields

	Table containing columns

	Component containing sub-components

	Model object containing Field objects

	Application containing controllers

The natural solution to the problem is to create array like this:

public $fields = [];

After that you would need to create code for adding objects into container, removing,
verify their existence etc.

CollectionTrait implements several handy methods which can be used
to create necessary methods with minimum code footprint:

class Form
{
 use CollectionTrait;

 public $fields = [];

 public function addField(string $name, $seed = [])
 {
 $seed = Factory::mergeSeeds($seed, [FieldMock::class]);

 $field = Factory::factory($seed, ['name' => $name]);

 return $this->_addIntoCollection($name, $field, 'fields');
 }

 // hasField, getField, removeField also can be added, see further docs.
}

Traits add multiple checks to prevert collisions between existing objects, call
init() method, carry over $app and set $owner properties and calculate ‘name’
by combining it with the parent.

CollectionTrait only supports named object - you may not omit the name, however
a more older implementation of ContainerTrait is used primarily
for tracking Render Tree in ATK UI where name is optional and a unique name
is guaranteed.

When $container is using ContainerTrait, this would be a typical code:

$child = $container->add(new ChildClass());

// $child is the object of ChildClass

$container->removeElement($child);

Although containers work with any objects, assigning additional traits to your
ChildClass can extend the basic functionality.

	InitializerTrait will add automatic code execution when adding

	AppScopeTrait will pass value of $app property from container to
child.

	TrackableTrait will let you assign unique names to object

	Factory will let you specify object class by Seed

	DiContainerTrait will let you with dependency injection

Just to clarify what Seed is:

$field = $form->add('TextArea');

In this scenario, even though a new object is added, we don’t do it ourselves.
We simply specify some information on how to create and what properties to
inject into the object:

$field = $form->add([\Atk4\Ui\FormField\Password::class, 'icon' => ['lock', 'circular inverted'], 'width' => 4);

The above code will determine the correct object to implement Password inside
Form, instantiate it and then even add Icon object which is also defined through
seed.

	Containers
	Name Trait
	Properties

	Methods

	CollectionTrait
	Methods

	Container Trait
	Properties

	Methods

	Trackable Trait
	Properties

	Methods

	Initializer Trait
	Introduction

	Methods

	Factory Class
	Introduction
	Type Hinting

	Class Name Resolution

	Seed
	Seed with and without class

	Lifecycle of argument-bound seed

	Factory
	Seed Components

	Class-less seeds

	Factory Defaults

	Precedence and Usage

	Seed Merging
	Default and Seed objects

	Usage in frameworks
	Specify Icon for a Button

	Specify Layout

	Form::addField and Table::addColumn

	addField, addButton, etc

	AppScope Trait
	Introduction

	Properties

	Methods

	Dependency Injection Container
	What is Dependency Injection

	What is Dependency Injection Container

	How to use DiContainerTrait

Hooks

When you look to make your framework / application extendable, the Hooks is a
modern standard in PHP applications. This way a 3rd-party addon can execute code
every time components are rendered or data is saved into database.

Our implementation of Hooks is based around storing callback references in array
for your standard objects then executing them.

[image: _images/containers.png]

Yet HookTrait implements many much needed extensions to make hooks work great:

	define multiple hooking spot per object, e.g: ‘beforeInit’, ‘beforeDelete’ etc

	multiple call-back can be assigned to each spot

	callbacks are executed in order of numeric priority

	arguments can be passed to callbacks

	return values can be collected from callbacks

	callback may “Break Hook” preventing other callbacks from being executed

Once you assign HookTrait to AnyClass, you can start assigning
and triggering callbacks:

$object = new AnyClass();

$object->onHook('test', function ($o) {
 echo 'hello';
});
$object->onHook('test', function ($o) {
 echo 'world';
});

$object->hook('test'); // outputs: helloworld

	Hook Trait
	Introduction

	Hook Spots

	Adding callbacks

	Short way to describe callback method

	Callback execution order

	Arguments

	Breaking Hooks

	Using references in hooks

	Checking if hook has callbacks

Hook-based dynamic Methods

DynamicMethodTrait adds ability to add methods into objects
dynamically.
That’s like a “trait” feature of a PHP, but implemented in run-time:

$object->addMethod('test', function ($o, $args) {
 echo 'hello, ' . $args[0];
});
$object->test('world'); // outputs: hello, world

There are also methods for removing and checking if methods exists, so:

method_exists($object, 'test');
// now should use
$object->hasMethod('test');

// and this way you can remove method
$object->removeMethod('test');

The implementation of dynamic methods relies on Hook trait, so to use it:

class AnyClass extends OtherClass
{
 use HookTrait;
 use DynamicMethodTrait;

 // .. your code ..
}

	Dynamic Method Trait
	Introduction

	Global Methods

	Dynamic Method Arguments

	Properties

	Methods

Modelable Objects

[Agile Data](https://github.com/atk4/data) features a modern implementation
for object modeling.
You may extend [Model](http://agile-data.readthedocs.io/en/develop/model.html)
class to define a business object, such as - ShoppingBag:

class ShoppingBag extends \Atk4\Data\Model
{
 public $table = 'shopping_bag';

 protected function init(): void
 {
 parent::init();

 $this->hasOne('user_id', new User());
 $this->hasMany('Items', new Item())
 ->addField('total_price', ['aggregate' => 'sum', 'field' => 'price']);
 }
}

Such a model handles references to the user and items, is aware of storage
details, but it is a non-visual object. Because Model does not know if you will
need HTML or RestAPI to access it, it does not implement any visualization.

[Agile UI](https://github.com/atk4/ui) implements UI Components that can be
binded together with a model and will render HTML in a way that User can
understand and interact with.

To associate UI Component with Data Model a setModel() is used. But it’s
not only the UI Components that can be associated with the model. In fact
“Authentication” controller can be associated with User model and RestAPI
endpoints can be associated with models. This is why setModel() is implemented
by a PHP Trait.

ModelableTrait allows you to associate your object with a Model:

$form->setModel('Order');

// or

$grid->setModel($order->ref('Items'), ['name', 'qty', 'price']);

	Modelable Trait
	Introduction

	Properties

	Methods

Exceptions

Exceptions in most programming languages are cryptic and confusing, about 5% of
the trace-back code is useful and it’s obscured in most unique ways.

We’ve got an excellent solution by implementing exceptions our way. Simply
look at how beautiful and clean they look:

[image: _images/exception-demo.png]

The same can be said about web output:

[image: _images/exception-html.png]

Agile Core implements Exception class which offers many benefits
compared to standard PHP exceptions:

	Pass additional information (new Exception(‘Bad argument’))->addMoreInfo(‘arg’, $arg’)

	Visualize in ASCII or HTML

	Better means of localization

Others

	Debug Trait
	Introduction
	Compatibility with PSR-3

	Debug

	Log

	debugTraceChange

	Properties

	Methods

	Writing ATK Docs
	Writing ATK Documentation

	Building and Testing Documentation
	Integrating PhpStorm

Containers

There are two relevant traits in the Container mechanics. Your “container”
object should implement ContainerTrait and your child objects
should implement TrackableTrait (if not, the $owner/$elements
links will not be established)

If both parent and child implement AppScopeTrait then the property
of AppScopeTrait::app will be copied from parent to the child also.

If your child implements InitializerTrait then the method
InitializerTrait::init will also be invoked after linking is done.

You will be able to use ContainerTrait::getElement() to access
elements inside container:

$object->add(new AnoterObject(), 'test');
$anotherObject = $object->getElement('test');

If you additionally use TrackableTrait together with NameTrait
then your objects also receive unique “name”. From example above:

	$object->name == “app_object_4”

	$anotherObject->name == “app_object_4_test”

Name Trait

	
trait NameTrait

	Name trait only adds the ‘name’ property. Normally you don’t have to use
it because TrackableTrait automatically inherits this trait.
Due to issues with PHP5 if both ContainerTrait and
TrackableTrait are using NameTrait and then
both applied on the object, the clash results in “strict warning”.
To avoid this, apply NameTrait on Containers only if you are
NOT using TrackableTrait.

Properties

	
property NameTrait::$name

	Name of the object.

Methods

None

CollectionTrait

	
trait CollectionTrait

	This trait makes it possible for you to add child objects
into your object, but unlike “ContainerTrait” you can use
multiple collections stored as different array properties.

This class does not offer automatic naming, so if you try
to add another element with same name, it will result in
exception.

Example:

class Form
{
 use Core\CollectionTrait;

 protected $fields = [];

 public function addField(string $name, $seed = [])
 {
 $seed = Factory::mergeSeeds($seed, [FieldMock::class]);

 $field = Factory::factory($seed, ['name' => $name]);

 return $this->_addIntoCollection($name, $field, 'fields');
 }

 public function hasField(string $name): bool
 {
 return $this->_hasInCollection($name, 'fields');
 }

 public function getField(string $name)
 {
 return $this->_getFromCollection($name, 'fields');
 }

 public function removeField(string $name)
 {
 $this->_removeFromCollection($name, 'fields');
 }
}

Methods

	
CollectionTrait::_addIntoCollection(string $name, object $object, string $collection)

	Adds a new element into collection:

public function addField(string $name, $seed = [])
{
 $field = Factory::factory($seed);

 return $this->_addIntoCollection($name, $field, 'fields');
}

Factory usage is optional but would allow you to pass seed into addField()

	
CollectionTrait::_removeFromCollection(string $name, string $collection)

	Remove element with a given name from collection.

	
CollectionTrait::_hasInCollection(string $name, string $collection)

	Return object if it exits in collection and false otherwise

	
CollectionTrait::_getFromCollection(string $name, string $collection)

	Same as _hasInCollection but throws exception if element is not found

	
CollectionTrait::_shortenMl($string $ownerName, string $itemShortName)

	Implements name shortening

Shortening is identical to :php:meth::ContainerTrait::_shorten.

Your object can this train together with ContainerTrait. As per June 2019
ATK maintainers agreed to gradually refactor ATK Data to use CollectionTrait
for fields, relations, actions.

Container Trait

	
trait ContainerTrait

	If you want your framework to keep track of relationships between objects
by implementing containers, you can use ContainerTrait.
Example:

class MyContainer extends OtherClass
{
 use Atk4\Core\ContainerTrait;

 public function add(object $obq, $args = []): object
 {
 $this->_addContainer($obj, is_string($args) ? ['name' => $args] : $args);

 return $obj;
 }
}

class MyItem
{
 use Atk4\Core\TrackableTrait;
 use Atk4\Core\NameTrait;
}

Now the instances of MyItem can be added to instances of MyContainer
and can keep track::

$parent = new MyContainer();
$parent->name = 'foo';
$parent->add(new MyItem(), 'child1');
$parent->add(new MyItem());

echo $parent->getElement('child1')->name;
// foo_child1

if ($parent->hasElement('child1')) {
 $parent->removeElement('child1');
}

foreach ($parent as $child) {
 $child->doSomething();
}

Child object names will be derived from the parent name.

Properties

	
property ContainerTrait::$elements

	Contains a list of objects that have been “added” into the current
container. The key is a “shot_name” of the child. The actual link to
the element will be only present if child uses both TrackableTrait
and NameTrait traits, otherwise the value of array key will be “true”.

Methods

	
ContainerTrait::add($obj, $args = [])

	If you are using ContainerTrait only, then you can safely use this add()
method. If you are also using factory, or initializer then redefine add()
and call _addContainer, _addFactory,.

	
ContainerTrait::_addContainer(object $element, array $args) → void

	Add element into container. Normally you should create a method
add() inside your class that will execute this method. Because
multiple traits will want to contribute to your add() method,
you should see sample implementation in Object::add.

Your minimum code should be:

public function add(object $obj, $args = []): object
{
 $this->_addContainer($obj, is_string($args) ? ['name' => $args] : $args);

 return $obj;
}

$args be in few forms:

$args = ['child_name'];
$args = 'child_name';
$args = ['child_name', 'db' => $mydb];
$args = ['name' => 'child_name']; // obsolete, backward-compatible

Method will return the object. Will throw exception if child with same
name already exist.

	
ContainerTrait::removeElement($shortName)

	Will remove element from $elements. You can pass either shortName
or the object itself. This will be called if TrackableTrait::destroy
is called.

	
ContainerTrait::_shorten($string $ownerName, string $itemShortName)

	Given the long owner name and short child name, this method will attempt to shorten the length
of your children. The reason for shortening a name is to impose reasonable
limits on overly long names. Name can be used as key in the GET argument
or form field, so for a longer names they will be shortened.

This method will only be used if current object has AppScope,
since the application is responsible for keeping shortenings.

	
ContainerTrait::getElement($shortName)

	Given a short-name of the element, will return the object. Throws exception
if object with such shortName does not exist.

	
ContainerTrait::hasElement($shortName)

	Given a short-name of the element, will return true if object with
such shortName exists, otherwise false.

	
ContainerTrait::_uniqueElementName()

	Internal method to create unique name for an element.

Trackable Trait

	
trait TrackableTrait

	Trackable trait implements a few fields for the object that will maintain
it’s relationship with the owner (parent).

When name is set for container, then all children will derive their names
of the parent.

	Parent: foo

	Child: foo_child1

The name will be unique within this container.

Properties

	
property TrackableTrait::$owner

	Will point to object which has add()ed this object. If multiple objects
have added this object, then this will point to the most recent one.

	
property TrackableTrait::$shortName

	When you add item into the owner, the “shortName” will contain short name
of this item.

Methods

	
TrackableTrait::getDesiredName()

	Normally object will try to be named after it’s class, if the name is omitted.
You can override this method to implement a different mechanics.

If you pass ‘desired_name’ => ‘heh’ to a constructor, then it will affect the
preferred name returned by this method. Unlike ‘name’ => ‘heh’ it won’t fail
if another element with this name exists, but will add ‘_2’ postfix.

	
TrackableTrait::destroy()

	If object owner is set, then this will remove object from it’s owner elements
reducing number of links to the object. Normally PHP’s garbage collector
should remove object as soon as number of links is zero.

Initializer Trait

	
trait InitializerTrait

	

Introduction

With our traits objects now become linked with the “owner” and the “app”.
Initializer trait allows you to define a method that would be called after
object is linked up into the environment.

Declare a object class in your framework:

class FormField
{
 use AppScopeTrait;
 use InitializerTrait;
 use NameTrait;
 use TrackableTrait;
}

class FormField_Input extends FormField
{
 public $value = null;

 protected function init(): void
 {
 parent::init();

 if ($_POST[$this->name) {
 $this->value = $_POST[$this->name];
 }
 }

 public function render()
 {
 return $this->getApp()->getTag('input/', ['name' => $this->name, 'value' => $value]);
 }
}

Methods

	
InitializerTrait::init()

	A blank init method that should be called. This will detect the problems
when init() methods of some of your base classes has not been executed and
prevents from some serious mistakes.

If you wish to use traits class and extend it, you can use this in your base
class:

class FormField
{
 use AppScopeTrait;
 use InitializerTrait {
 init as _init
 }
 use TrackableTrait;
 use NameTrait;

 public $value = null;

 protected function init(): void
 {
 $this->_init(); // call init of InitializerTrait

 if ($_POST[$this->name) {
 $this->value = $_POST[$this->name];
 }
 }
}

Factory Class

	
class Factory

	

Introduction

This trait is used to initialize object of the appropriate class, handling
things like:

	determining name of the class with ability to override

	passing argument to constructors

	setting default property values

Thanks to Factory trait, the following code:

$button = $app->add(['Button', 'A Label', 'icon' => 'book', 'action' => My\Action::class]);

can replace this:

$button = new \Atk4\Ui\Button('A Label');
$button->icon = new \Atk4\Ui\Icon('book');
$button->action = new My\Action();
$app->add($button);

Type Hinting

Agile Toolkit 2.1 introduces support for a new syntax. It is functionally
identical to a short-hand code, but your IDE will properly set type for
a $button to be class Button instead of class View:

$button = Button::addTo($view, ['A Label', 'icon' => 'book', 'action' => My\Action::class]);

The traditional $view->add will remain available, there are no plans to
remove that syntax.

Class Name Resolution

An absolute/full class name must be always provided. Relative class name resolution was obsoleted/removed.

Seed

Using “class” as opposed to initialized object yields many performance gains,
as initialization of the class may be delayed until it’s required. For instance:

$model->hasMany('Invoices', Invoice::class);

// is faster than

$model->hasMany('Invoices', new Invoice());

That is due to the fact that creating instance of “Invoice” class is not required
until you actually traverse into it using $model->ref(‘Invoices’) and can offer
up to 20% performance increase. But in some cases, you want to pass some information
into the object.

Suppose you want to add a button with an icon:

$button = $view->add('Button');
$button->icon = new Icon('book');

It’s possible that some call-back execution will come before button rendering, so
it’s better to replace icon with the class:

$button = $view->add('Button');
$button->icon = Icon::class;

In this case, however - it is no longer possible to pass the “book” parameter to
the constructor of the Icon class.

This problem is solved in ATK with “Seeds”.

A Seed is an array consisting of class name/object, named and numeric arguments:

$seed = [Button::class, 'My Label', 'icon' => 'book'];

Seed with and without class

There are two types of seeds - with class name and without. The one above contains
the class and is used when user needs a flexibility to specify a class:

$app->add(['Button', 'My Label', 'icon' => 'book']);

The other seed type is class-less and can be used in situations where there are no
ambiguity about which class is used:

$button->icon = ['book'];

Either of those seeds can be replaced with the Object:

$button = $app->add(new Button('My Label'));
$button->icon = new Icon('book');

If seed is a string then it would be treated as class name. For a class-less seed
it would be treaded as a first argument to the construcor:

$button = $app->add('Button');
$button->icon = 'book';

Lifecycle of argument-bound seed

ATK only uses setters/getters when they make sense. Argument like “icon” is a very
good example where getter is needed. Here is a typical lifecycle of an argument:

	when object is created “icon” is set to null

	seed may have a value for “icon” and can set it to string, array or object

	user may explicitly set “icon” to string, array or object

	some code may wish to interract with icon and will expect it to be object

	recursiveRender() will expect icon to be also added inside $button’s template

So here are some rules for ATK and add-ons:

	use class-less seeds where possible, but indicate so in the comments

	keep seed in its original form as long as possible

	use getter (getIcon()) which would convert seed into object (if needed)

	add icon object into render-tree inside recursiveRender() method

If you need some validation (e.g. icon and iconRight cannot be set at the same time
by the button), do that inside recursiveRender() method or in a custom setter.

If you do resort to custom setters, make sure they return $this for better chaining.

Always try to keep things simple for others and also for yourself.

Factory

As mentioned juts above - at some point your “Seed” must be turned into Object. This
is done by executing factory method.

	
Factory::factory($seed, $defaults = [])

	

Creates and returns new object. If is_object($seed), then it will be returned and
$defaults will only be sed if object implement DiContainerTrait.

In a conventional PHP, you can create and configure object before passing
it onto another object. This action is called “dependency injecting”.
Consider this example:

$button = new Button('A Label');
$button->icon = new Icon('book');
$button->action = new Action(..);

Because Components can have many optional components, then setting them
one-by-one is often inconvenient. Also may require to do it recursively,
e.g. Action may have to be configured individually.

Agile Core implements a mechanism to make that possible through using Factory::factory()
method and specifying a seed argument:

use Atk4\Ui\Button;

$button = Factory::factory([Button::Class, 'A Label', 'icon' => ['book'], 'action' => new Action(..)]);

Note that passing ‘icon’ => [‘book’] will also use factory to initialize icon object.

Finally, if you are using IDE and type hinting, a preferred code would be:

use Atk4\Ui\Button;

$button = new Button('A Label');
Factory::factory($button, ['icon' => ['book'], 'action' => new Action(..)]);

This will properly set type to $button variable, while still setting properties for icon/action. More
commonly, however, you would use this through the add() method:

use Atk4\Ui\Button;

$button = new Button('A Label');
$view->add([$button, 'icon' => ['book'], 'action' => new Action('..')]);

Seed Components

Class definition - passed as the $seed[0] and is the only mandatory
component, e.g:

$button = Factory::factory([Button::class]);

Any other numeric arguments will be passed as constructor arguments:

$button = Factory::factory([Button::class, 'My Label', 'red', 'big']);

// results in

new Button('My Label', 'red', 'big');

Finally any named values inside seed array will be assigned to class properties
by using DiContainerTrait::setDefaults.

Factory uses array_shift to separate class definition from other components.

Class-less seeds

You cannot create object from a class-less seed, simply because factory would not know which class
to use. However it can be passed as a second argument to the factory:

$this->icon = Factory::factory([Icon::class, 'book'], $this->icon);

This will use class icon and first argument ‘book’ as default, but would use exitsing seed version if
it was specified. Also it will preserve the object value of an icon.

Factory Defaults

Defaults array takes place of $seed if $seed is missing components. $defaults is
using identical format to seed, but without the class. If defaults is not an
array, then it’s wrapped into [].

Array that lacks class is called defaults, e.g.:

$defaults = ['Label', 'My Label', 'big red', 'icon' => 'book'];

You can pass defaults as second argument to Factory::factory():

$button = Factory::factory([Button::class], $defaults);

Executing code above will result in ‘Button’ class being used with ‘My Label’ as
a caption and ‘big red’ class and ‘book’ icon.

You may also use null to skip an argument, for instance in the above example
if you wish to change the label, but keep the class, use this:

$label = Factory::factory([null, 'Other Label'], $defaults);

Finally, if you pass key/value pair inside seed with a value of null then
default value will still be used:

$label = Factory::factory(['icon' => null], $defaults);

This will result icon=book. If you wish to disable icon, you should use false
value:

$label = Factory::factory(['icon' => false], $defaults);

With this it’s handy to pass icon as an argument and don’t worry if the null is
used.

Precedence and Usage

When both seed and defaults are used, then values inside “seed” will have
precedence:

	for named arguments any value specified in “seed” will fully override
identical value from “defaults”, unless if the seed’s value is “null”.

	for constructor arguments, the non-null values specified in “seed” will
replace corresponding value from $defaults.

The next example will help you understand the precedence of different argument
values. See my description below the example:

class RedButton extends Button
{
 protected $icon = 'book';

 protected function init(): void
 {
 parent::init();

 $this->icon = 'right arrow';
 }
}

$button = Factory::factory([RedButton::class, 'icon' => 'cake'], ['icon' => 'thumbs up']);
// Question: what would be $button->icon value here?

Factory will start by merging the parameters and will discover that icon is
specified in the seed and is also mentioned in the second argument - $defaults.
The seed takes precedence, so icon=’cake’.

Factory will then create instance of RedButton with a default icon ‘book’.
It will then execute DiContainerTrait::setDefaults with the
[‘icon’ => ‘cake’] which will change value of $icon to cake.

The cake will be the final value of the example above. Even though init()
method is set to change the value of icon, the init() method is only executed
when object becomes part of RenderTree, but that’s not happening here.

Seed Merging

	
Factory::mergeSeeds($seed, $seed2, ...)

	

Two (or more) seeds can be merged resulting in a new seed with some combined
properties:

	
	Class of a first seed will be selected. If specified as “null” will be picked

	from next seed.

	If string as passed as any of the argument it’s considered to be a class

	If object is passed as any of the argument, it will be used instead ignoring
all classes and numeric arguments.
All the key->value pairs will be merged and passed into setDefaults().

Some examples:

Factory::mergeSeeds(['Button', 'Button Label'], ['Message', 'Message label']);
// results in ['Button', 'Button Label']

Factory::mergeSeeds([null, 'Button Label'], ['Message', 'Message Label']);
// Results in ['Message', 'Button Label']);

Factory::mergeSeeds(['null, 'Label1', 'icon' => 'book'], ['icon' => 'coin', 'Button'], ['class' => ['red']]);
// Results in ['Button', 'Label1', 'icon' => 'book', 'class' => ['red']]

Seed merging can also be used to merge defaults:

Factory::mergeSeeds(['label 1'], ['icon' => 'book']);
// results in ['label 1', 'icon' => 'book']

When object is passed, it will take precedence and absorb all named arguments:

Factory::mergeSeeds(
 ['null, 'Label1', 'icon' => 'book'],
 ['icon' => 'coin', 'Button'],
 new Message('foobar'),
 ['class' => ['red']]
);
// result is
// $obj = new Message('foobar');
// $obj->setDefaults(['icon' => 'book', 'class' => ['red']);

If multiple objects are specified then early ones take precedence while still
absorbing all named arguments.

Default and Seed objects

When object is passed as 2nd argument to Factory::factory() it takes precedence over
all array-based seeds. If 1st argument of Factory::factory() is also object, then 1st
argument object is used:

Factory::factory([Icon::class, 'book'], ['pencil']);
// book

Factory::factory([Icon::class, 'book'], new Icon('pencil'));
// pencil

Factory::factory(new Icon('book'), new Icon('pencil'));
// book

Usage in frameworks

There are several ways to use Seed Merging and Agile UI / Agile Data makes use
of those patterns when possible.

Specify Icon for a Button

As you may know, Button class has icon property, which may be specified as a
string, seed or object:

$button = $app->add(['Button', 'icon' => 'book']);

Well, to implement the button internally, render method uses this:

// in Form
$this->buttonSave = Factory::factory([Button::class], $this->buttonSave);

So the value you specify for the icon will be passed as:

	string: argument to constructor of Button().

	array: arguments for constructors and inject properties

	object: will override return value

Specify Layout

The first thing beginners learn about Agile Toolkit is how to specify layout:

$app = new \Atk4\Ui\App('Hello World');
$app->initLayout('Centered');

The argument for initLayout is passed to factory:

$this->layout = Factory::factory($layout);

The value you specify will be treated like this:

	string: specify a class (prefixed by Layout)

	array: specify a class and allow to pass additional argument or constructor options

	object: will override layout

Form::addField and Table::addColumn

Agile UI is using form field classes from namespace Atk4UiFormField.
A default class is ‘Line’ but there are several ways how it can be overridden:

	User can specify $ui[‘form’] / $ui[‘table’] property for model’s field

	User can pass 2nd parameter to addField()

	Class can be inferred from field type

Each of the above can specify class name, so with 3 seed sources they need
merging:

$seed = Factory::mergeSeeds($decorator, $field->ui, $inferred, [\Atk4\Ui\FormField\Line::class, 'form' => $this]);
$decorator = Factory::factory($seed, null, 'FormField');

Passing an actual object anywhere will use it instead even if you specify seed.

Specify Form Field

addField, addButton, etc

Model::addField, Form::addButton, FormLayout::addHeader imply that the class of
an added object is known so the argument you specify to those methods ends up
being a factory’s $default:

public function addButton($label)
{
 return $this->add(
 Factory::factory([Button::class, null, 'secondary'], $label);
 'Buttons'
);
}

in this code factory will use a seed with a null for label, which means, that
label will be actually taken from a second argument. This pattern enables 3
ways to use addButton():

$form->addButton('click me');
// Adds a regular button with specified label, as expected

$form->addButton(['click me', 'red', 'icon' => 'book']);
// Specify class of a button and also icon

$form->addButton(new MyButton('click me'));
// Use an object specified instead of a button

A same logic can be applied to addField:

$model->addField('is_vip', ['type' => 'boolean']);
// class = Field, type = boolean

$model->addField('is_vip', ['boolean'])
// new Field('boolean'), same result

$model->addField('is_vip', new MyBoolean());
// new MyBoolean()

and the implementation uses factory’s default:

$field = Factory::factory($this->fieldSeed);

Normally the field class property is a string, which will be used, but it can
also be array.

AppScope Trait

	
trait AppScopeTrait

	

Introduction

Typical software design will create the application scope. Most frameworks
relies on “static” properties, methods and classes. This does puts some
limitations on your implementation (you can’t have multiple applications).

App Scope will pass the ‘app’ property into all the object that you’re adding,
so that you know for sure which application you work with.

Properties

	
property AppScopeTrait::$app

	Always points to current Application object

	
property AppScopeTrait::$maxNameLength

	When using mechanism for ContainerTrait, they inherit name of the parent to
generate unique name for a child. In a framework it makes sense if you have
a unique identifiers for all the objects because this enables you to use
them as session keys, get arguments, etc.

Unfortunately if those keys become too long it may be a problem, so
ContainerTrait contains a mechanism for auto-shortening the name based
around maxNameLength. The mechanism does only work if AppScopeTrait is
used, $app property is set and has a maxNameLength defined.
Minimum value is 40.

	
property AppScopeTrait::$uniqueNameHashes

	As more names are shortened, the substituted part is being placed into
this hash and the value contains the new key. This helps to avoid creating
many sequential prefixes for the same character sequence.

Methods

None

Dependency Injection Container

	
trait DiContainerTrait

	

Agile Core implements basic support for Dependency Injection Container.

What is Dependency Injection

As it turns out many PHP projects have built objects which hard-code
dependencies on another object/class. For instance:

$book = new Book();
$book->name = 'foo';
$book->save(); // saves somewhere??

The above code uses some ORM notation and the book record is saved into the
database. But how does Book object know about the database? Some frameworks
thought it could be a good idea to use GLOBALS or STATIC. PHP Community is
fighting against those patterns by using Dependency Injection which is a pretty
hot topic in the community.

In Agile Toolkit this has never been a problem, because all of our objects are
designed without hard dependencies, globals or statics in the first place.

“Dependency Injection” is just a fancy word for ability to specify other objects
into class constructor / property:

$book = new Book($mydb);
$book['name'] = 'foo';
$book->save(); // saves to $mydb

What is Dependency Injection Container

By design your objects should depend on as little other objects as possible.
This improves testability of objects, for instance. Typically constructor can
be good for 1 or 2 arguments.

However in Agile UI there are components that are designed specifically to
encapsulate many various objects. Crud for example is a fully-functioning
editing solution, but suppose you want to use custom form object:

$crud = new Crud([
 'formEdit' => new MyForm(),
 'formAdd' => new MyForm(),
]);

In this scenario you can’t pass all of the properties to the constructor, and
it’s easier to pass it through array of key/values. This pattern is called
Dependency Injection Container. Theory states that developers who use IDEs
extensively would prefer to pass “object” and not “array”, however we typically
offer a better option:

$crud = new Crud();
$crud->formEdit = new MyForm();
$crud->formAdd = new MyForm();

How to use DiContainerTrait

Calling this method will set object’s properties. If any specified property
is undefined then it will be skipped. Here is how you should use trait:

class MyObj
{
 use DiContainerTrait;

 public function __construct($defaults = [])
 {
 $this->setDefaults($defaults, true);
 }
}

You can also extend and define what should be done if non-property is passed.
For example Button component allows you to pass value of $content and $class
like this:

$button = new Button(['My Button Label', 'red']);

This is done by overriding setMissingProperty method:

class MyObj
{
 use DiContainerTrait {
 setMissingProperty as private _setMissingProperty;
 }

 public function __construct($defaults = [])
 {
 $this->setDefaults($defaults, true);
 }

 protected function setMissingProperty($key, $value)
 {
 // do something with $key / $value

 // will either cause exception or will ignorance
 $this->_setMissingProperty($key, $value);
 }
}

Hook Trait

	
trait HookTrait

	

Introduction

HookTrait adds some methods into your class to registering call-backs that would
be executed by triggering a hook. All hooks are local to the object, so if you
want to have application-wide hook then use app property.

Hook Spots

Hook is described by a string identifier which we call hook-spot, which would
normally be expressing desired action with prefixes “before” or “after if
necessary.

Some good examples for hook spots are:

	beforeSave

	afterDelete

	validation

The framework or application would typically execute hooks like this:

$obj->hook('spot');

You can register multiple call-backs to be executed for the requested spot:

$obj->onHook('spot', function ($obj) {
 echo "Hook 'spot' is called!";
});

Adding callbacks

	
HookTrait::onHook($spot, $fx = null, array $args = [], int $priority = 5)

	

Register a call-back method. Calling several times will register multiple
callbacks which will be execute in the order that they were added.

Short way to describe callback method

There is a concise syntax for using $fx by specifying object only.
In case $fx is omitted then $this object is used as $fx.

In this case a method with same name as $spot will be used as callback:

protected function init(): void
{
 parent::init();

 $this->onHookShort($spot, function (...$args) {
 $this->beforeUpdate(...$args);
 });
}

protected function beforeUpdate()
{
 // will be called from the hook
}

Callback execution order

$priority will make hooks execute faster. Default priority is 5, but if you add
hook with priority 1 it will always be executed before any hooks with priority
2, 3, 5 etc.

Normally hooks are executed in the same order as they are added, however if you
use negative priority, then hooks will be executed in reverse order:

$obj->onHook('spot', third, [], -1);

$obj->onHook('spot', second, [], -5);
$obj->onHook('spot', first, [], -5);

$obj->onHook('spot', fourth, [], 0);
$obj->onHook('spot', fifth, [], 0);

$obj->onHook('spot', ten, [], 1000);

$obj->onHook('spot', sixth, [], 2);
$obj->onHook('spot', seventh, [], 5);
$obj->onHook('spot', eight);
$obj->onHook('spot', nine, [], 5);

	
HookTrait::hook($spot, $args = null)

	

execute all hooks in order. Hooks can also return some values and those values
will be placed in array and returned by hook():

$mul = function ($obj, $a, $b) {
 return $a*$b;
};

$add = function ($obj, $a, $b) {
 return $a+$b;
};

$obj->onHook('test', $mul);
$obj->onHook('test', $add);

$res1 = $obj->hook('test', [2, 2]);
// res1 = [4, 4]

$res2 = $obj->hook('test', [3, 3]);
// res2 = [9, 6]

Arguments

As you see in the code above, we were able to pass some arguments into those
hooks. There are actually 3 sources that are considered for the arguments:

	first argument to callbacks is always the $object

	arguments passed as 3rd argument to onHook() are included

	arguments passed as 2nd argument to hook() are included

You can also use key declarations if you wish to override arguments:

// continue from above example

$pow = function ($obj, $a, $b, $power) {
 return pow($a, $power)+$pow($b, $power);
}

$obj->onHook('test', $pow, [2]);
$obj->onHook('test', $pow, [7]);

// execute all 3 hooks
$res3 = $obj->hook('test', [2, 2]);
// res3 = [4, 4, 8, 256]

$res4 = $obj->hook('test', [2, 3]);
// res3 = [6, 5, 13, 2315]

Breaking Hooks

	
HookTrait::breakHook()

	

When this method is called from a call-back then it will cause all other
callbacks to be skipped.

If you pass $return argument then instead of returning all callback return
values in array the $return will be returned by hook() method.

If you do not pass $return value (or specify null) then list of the values
collected so far will be returned

Remember that adding breaking hook with a lower priority can prevent other
call-backs from being executed:

$obj->onHook('test', function ($obj) {
 $obj->breakHook("break1");
});

$obj->onHook('test', function ($obj) {
 $obj->breakHook("break2");
}, [], -5);

$res3 = $obj->hook('test', [4, 4]);
// res3 = "break2"

breakHook method is implemented by throwing a special exception that is then
caught inside hook() method.

Using references in hooks

In some cases you want hook to change certain value. For example when model
value is set it may call normalization hook (methods will change $value):

public function set($field, $value)
{
 $this->hook('normalize', [&$value]);
 $this->data[$field] = $value;
}

$m->onHook('normalize', function (&$a) {
 $a = trim($a);
});

Checking if hook has callbacks

	
HookTrait::hookHasCallbacks()

	

This method will return true if at least one callback has been set for the hook.

Dynamic Method Trait

	
trait DynamicMethodTrait

	

Introduction

Adds ability to add methods into objects dynamically. That’s like a “trait”
feature of a PHP, but implemented in run-time:

$object->addMethod('test', function ($o, $args) {
 echo 'hello, ' . $args[0];
});
$object->test('world');

Global Methods

If object has application scope AppScopeTrait and the application
implements HookTrait then executing $object->test() will also
look for globally-registered method inside the application:

$object->getApp()->addGlobalMethod('test', function ($app, $o, $args) {
 echo 'hello, ' . $args[0];
});

$object->test('world');

Of course calling test() on the other object afterwards will trigger same
global method.

If you attempt to register same method multiple times you will receive an
exception.

Dynamic Method Arguments

When calling dynamic method first argument which is passed to the method will
be object itself. Dynamic method will also receive all arguments which are
given when you call this dynamic method:

$m->addMethod('sum', function ($m, $a, $b) {
 return $a + $b;
});
echo $m->sum(3, 5); // 8

Properties

None

Methods

	
DynamicMethodTrait::tryCall($method, $arguments)

	Tries to call dynamic method, but doesn’t throw exception if it is not
possible.

	
DynamicMethodTrait::addMethod($name, $closure)

	Add new method for this object.
See examples above.

	
DynamicMethodTrait::hasMethod($name)

	Returns true if object has specified method (either native or dynamic).
Returns true also if specified methods is defined globally.

	
DynamicMethodTrait::removeMethod($name)

	Remove dynamically registered method.

	
DynamicMethodTrait::addGlobalMethod($name, $closure)

	Registers a globally-recognized method for all objects.

	
DynamicMethodTrait::hasGlobalMethod($name)

	Return true if such global method exists.

Modelable Trait

	
trait ModelableTrait

	

Introduction

not yet implemented

Properties

Methods

Debug Trait

	
trait DebugTrait

	

Introduction

Agile Core implements ability for application to implement “debug”, “info” and
“messages”. The general idea of them is that they can be generated in the depths
of the code, but the application will receive and process this information based
on the defined settings.

Sample scenario would be if some of the components tries to perform operation
which fails and it is willing to pass information about this failure to the app.
This is not as extreme as exception, but still, user needs to be able to find
this information eventually.

Compatibility with PSR-3

Loggers as implemented by PSR-3 define message routing with various LogLevels,
but it’s intended for logging only. The Debug Trait covers a wider context as
described below:

Debug

The design goal of Debug is to be able to display contextual debug information
only when it’s manually enabled. For instance, if you are having problem with
user authentication, you should enable $auth->debug(). On other hand - if
you wish to see persistence-related debug info, then $db->debug() will
enable that.

Information logged through debug like this on any object that implements
DebugTrait:

$this->debug('Things are bad');
$this->debug('User {user} created', ['user' => $user]);

The Application itself can use DebugTrait too and normally should do, making it
possible to use $this->getApp()->debug().

Various objects may implement DebugTrait and also invoke $this->debug(), but in
most cases this will simply be ignored right away unless you manually enable
debugging for the object:

$obj1->debug(); // enable debugging
$obj1->debug(false); // disable debugging
$obj1->debug(true); // also enables debugging

$obj1->debug('test1'); // will go to logger
$obj2->debug('test2'); // will not go to logger because debug is not enabled for this object

Executing debug will look for $this->getApp() link and if the application
implements Psr\Log\LoggerInterface, then $this->getApp()->log() will be
called using LogLevel DEBUG.

Log

Log method will log message every time. DebugTrait implements the log()
method which will either display information on the STDOUT (if $this->getApp()
does not exist or does not implement PSR-3)

debugTraceChange

This method can help you find situations when a certain code is called multiple
times and when it shouldn’t. When called first time it will remember “trace”
which is used to arrive at this point. Second time it will compare with the
previous and will tell you where trace has diverged.

This method is pretty valuable when you try to find why certain areas of the
code have executed multiple times.

Properties

Methods

Writing ATK Docs

New users of Agile Toolkit rely on documentation. To make it easier for the
maintainers to update documentation - each component of ATK framework comes
with a nice documentation builder.

Writing ATK Documentation

Open file “docs/index.rst” in your editor. Most editors will support
“reSTructured Text” through add-on. The support is not perfect, but it works.

If you are updating a feature - find a corresponding “.rst” file. Your editor
may be able to show you a preview. Modify or extend documentation as needed.

See also: http://www.sphinx-doc.org/en/master/usage/restructuredtext/basics.html

Building and Testing Documentation

Make sure you have “Docker” installed, follow simple instructions in
“docs/README.md”.

Integrating PhpStorm

You can integrate PhpStorm build process like this:

[image: Create build configuration for the Dockerfile]

[image: Adjust Port settings to expose 80 as 8080]

[image: Use "Ctrl+R" anytime to build docs]

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U

_

 	
 	__construct() (Exception method)

 	_addContainer() (ContainerTrait method)

 	_addIntoCollection() (CollectionTrait method)

 	_getFromCollection() (CollectionTrait method)

 	
 	_hasInCollection() (CollectionTrait method)

 	_removeFromCollection() (CollectionTrait method)

 	_shorten() (ContainerTrait method)

 	_shortenMl() (CollectionTrait method)

 	_uniqueElementName() (ContainerTrait method)

A

 	
 	add() (ContainerTrait method)

 	addGlobalMethod() (DynamicMethodTrait method)

 	addMethod() (DynamicMethodTrait method)

 	
 	addMoreInfo() (Exception method)

 	app (AppScopeTrait property)

 	AppScopeTrait (trait)

B

 	
 	breakHook() (HookTrait method)

C

 	
 	CollectionTrait (trait)

 	
 	ConfigTrait (trait)

 	ContainerTrait (trait)

D

 	
 	DebugTrait (trait)

 	destroy() (TrackableTrait method)

 	
 	DiContainerTrait (trait)

 	DynamicMethodTrait (trait)

E

 	
 	elements (ContainerTrait property)

 	
 	Exception (class)

F

 	
 	Factory (class)

 	
 	factory() (Factory method)

G

 	
 	getColorfulText() (Exception method)

 	getConfig() (ConfigTrait method)

 	getDesiredName() (TrackableTrait method)

 	
 	getElement() (ContainerTrait method)

 	getHtml() (Exception method)

 	getParams() (Exception method)

H

 	
 	hasElement() (ContainerTrait method)

 	hasGlobalMethod() (DynamicMethodTrait method)

 	hasMethod() (DynamicMethodTrait method)

 	
 	hook() (HookTrait method)

 	hookHasCallbacks() (HookTrait method)

 	HookTrait (trait)

I

 	
 	init() (InitializerTrait method)

 	
 	InitializerTrait (trait)

M

 	
 	maxNameLength (AppScopeTrait property)

 	
 	mergeSeeds() (Factory method)

 	ModelableTrait (trait)

N

 	
 	name (NameTrait property)

 	
 	NameTrait (trait)

O

 	
 	onHook() (HookTrait method)

 	
 	owner (TrackableTrait property)

P

 	
 	params (Exception property)

R

 	
 	readConfig() (ConfigTrait method)

 	
 	removeElement() (ContainerTrait method)

 	removeMethod() (DynamicMethodTrait method)

S

 	
 	setConfig() (ConfigTrait method)

 	
 	setMessage() (Exception method)

 	shortName (TrackableTrait property)

T

 	
 	TrackableTrait (trait)

 	
 	tryCall() (DynamicMethodTrait method)

U

 	
 	uniqueNameHashes (AppScopeTrait property)

Config Trait

	
trait ConfigTrait

	

Agile Core implements support for read configuration files of different formats

Introduction

This trait can be added to any object to load a configuration.
Configuration files can be of 4 types: php, php-inline, json, yaml.

Loading can be done in this way:

$object = new Object();
$object->readConfig(‘config.php’, ‘php’);

After loading, configuration elements can be retrieved in this way:

$object->getConfig(‘element_key’, ‘if not defined use this as default’);

if you need an element that is declared inside an array you can use a special syntax:

$object->getConfig(‘level1_array/level2_array/element_key’, ‘if not defined use this as default’);

Element in config can be defined even manually:

$object->setConfig(‘element_key’, $element);

Supported Formats

php

Configuration is defined as a return statement

	return [

	‘var A’ => new UserClass(),
‘var B’ => 2,
‘var C’ => [

‘2nd-level’ => ‘var D’,

],

];

JSON

Configuration is defined as json

YAML

Configuration is defined as yaml

Methods

	
ConfigTrait::readConfig($files = ['config.php'], $format = 'php')

	Read config file or files and store it in $config property

	
ConfigTrait::setConfig($paths = [], $value = null)

	Manually set configuration option

	
ConfigTrait::getConfig($path, $defaultValue = null)

	Get configuration element

Exception

	
class Exception

	

Introduction

Exception provides several improvements over vanilla PHP exception class. The
most significant change is introduction of parameters.

	
property Exception::$params

	

Parameters will store supplementary information that can help identify and
resolve the problem. There are two ways to supply parameters, either during
the constructor or using addMoreInfo()

	
Exception::__construct(error, code, previous)

	This uses same format as a regular PHP exception, but error parameter will
now support array:

throw (new Exception('Value is too big'))
 ->addMoreInfo('max', $max);

The other option is to supply error is:

	
Exception::addMoreInfo(param, value)

	Augments exception by providing extra information. This is a typical use
format:

try {
 $field->validate();
} catch (Validation_Exception $e) {
 $e->addMoreInfo('field', $field

 throw $e;
}

I must note that the reason for using parameters is so that the name of the
actual exception could be localized easily.

The final step is to actually get all the information from your exception.
Since the exception is backwards compatible, it will contain message, code
and previous exception as any normal PHP exception would, but to get the
parameters you would need to use:

	
Exception::getParams()

	Return array that lists all parameters collected by exception.

Some param values may be objects.

	
Exception::setMessage($message)

	Change message (subject) of a current exception. Primary use is for
localization purposes.

Output Formatting

Exception (at least for now) contains some code to make the exception actually
look good. This functionality may be removed in the later versions to
facilitate use of proper loggers. For now:

	
Exception::getColorfulText()

	

Will return nice ANSI-colored exception that you can output to the console for
user to see. This will include the error, parameters and backtrace. The code
will also make an attempt to locate and highlight the code that have caused the
problem.

	
Exception::getHtml()

	

Will return nice HTML-formatted exception that will rely on a presence of
Fomantic-UI. This will include the error, parameters and backtrace. The code
will also make an attempt to locate and highlight the code that have caused the
problem.

[image: _images/exception-demo.png]

Handling Exceptions in ATK Data and ATK UI

Sometimes you want your exceptions to be displayed nicely. There are several ways:

Try and Catch block

If you want, you can wrap your code inside try / catch block:

try {
 // some code..
} catch (\Atk4\Core\Exception $e) {
 // handle exception
}

The other option is to use automatic exception catching, (Atk4UiApp::catchExceptions)
which will automatically catch any unhandled exception then pass it to Atk4UiApp::caughtException().

If you do not instantiate App, or set it up without automatic exception catching:

$app = new \Atk4\Ui\App(['catchExceptions' => false]);

then you might want to output message details yourself.

Use Exception::getColorfulText or Exception::getHtml:

try {
 // some code..
} catch (\Atk4\Core\Exception $e) {
 echo $e->getColorfulText();
} catch (\Exception $e) {
 echo $e->getMessage();
}

Although it’s not advisable to output anything else other than the Message to user (in production),
you can get values of additional parameters through:

$e->getParams();

 _static/plus.png

_static/up-pressed.png

_static/up.png

_images/doc-build-phpstorm2.png
'en|

st
o

tn

index.rst = Dockerfile ¥a composer.ison & Makefile =~ README.md H_reauirements.txt (&' FactoryTraitTe
Edit Run Configuration
Name: | docs/Dockerfile Share through VCS @ Allow parallel run
Server: | & Docker v
Dockerfile: docs/Dockerfile = v
Context folder: docs =
Image tag:
Build args:
XX Port Bindings
Build options:
Host port Container port Protocol Host IP

¥/ Run built image 8080 tep
Container name:
Executable

Entrypoint:

Command:
Publish exposed ports to the host interfaces:

Bind ports: 8080:80
Bind mounts:
Environment variables:
Run options:
Command preview: nage_tag> . &&
v Before launch: Activate tool window

+
There are no tasks
+
Show this page V| Activate tool window

? Cancel Apply

_images/doc-build-phpstorm3.png
. docs/Dockerfile v | b

txt G FactoryTraitTest.php G C

_images/containers.png
Container Object

[Object

_images/doc-build-phpstorm1.png
I core) B docs) A& Dockerfile

[&] Project v

v Il core ~/Sites/core
> I github
» I build
Y M docs
» I build
> I images
appscope.rst
& conf.py
config.rst
container.rst
containers.png
[core-doc-schemas.graffle
il debug.rst
i di.rst
5 Dockerfile
dynamic-method.png
dynamicmethod.rst

B U nantiAn ret

IF 1: Project

¢

o — G StaticAddToTest.php index.rst E—{ Dockerfile i{'.} ce
» FROM nvthon:2-stretch as huilder
» Run 'docs/Dockerfile’
Build Image for 'docs/Dockerfile’

ADD requirements.txt .

RUN pip install pip==9.0.1 wheel==0.29.0 \
& pip install -r requirements.txt

ADD . .
RUN make html
13

FROM nginx:latest

COPY —-from=builder /www/build/html /usr/share/ng

_images/exception-demo.png
Orange-Dream:test rw$ php test4.php
--[Agile Toolkit Exception]

atk4\core\Exception:
test: 6
Stack Trace:
/Users/rw/Sites/test/test4. faulty
(6)
/Users/rw/Sites/test/test4. faulty()
/Users/rw/Sites/test/test4. faulty()
/Users/rw/Sites/test/test4. faulty()
[Users/ruw/Gites/test/test4d. faulty()

/Users/rw/Sites/test/test4 faulty()

_images/exception-html.png
Fatal Error
atk4\ui\Exception: Not sure what to do

Exception Parameters

e key: "foo"
e val: "bar"

Stack Trace

File

/www/ui/src/View.php: 265

endor/atk4/core/src/DIContainerTrait.php:

61

/www/ui/src/View.php: 233

Object

atk4\ui\Exception

atk4\ui\View

atk4\ui\View

Method

atk4\core\Exception::__construct

({"0":"Not sure what to
do""key":"foo",'val":"bar"})

atk4\ui\View::setMissingProperty()

atk4\ui\View::_setDefaults()

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Agile Core Documentation

 		
 Containers

 		
 Name Trait

 		
 Properties

 		
 Methods

 		
 CollectionTrait

 		
 Methods

 		
 Container Trait

 		
 Properties

 		
 Methods

 		
 Trackable Trait

 		
 Properties

 		
 Methods

 		
 Initializer Trait

 		
 Introduction

 		
 Methods

 		
 Factory Class

 		
 Introduction

 		
 Type Hinting

 		
 Class Name Resolution

 		
 Seed

 		
 Seed with and without class

 		
 Lifecycle of argument-bound seed

 		
 Factory

 		
 Seed Components

 		
 Class-less seeds

 		
 Factory Defaults

 		
 Precedence and Usage

 		
 Seed Merging

 		
 Default and Seed objects

 		
 Usage in frameworks

 		
 Specify Icon for a Button

 		
 Specify Layout

 		
 Form::addField and Table::addColumn

 		
 addField, addButton, etc

 		
 AppScope Trait

 		
 Introduction

 		
 Properties

 		
 Methods

 		
 Dependency Injection Container

 		
 What is Dependency Injection

 		
 What is Dependency Injection Container

 		
 How to use DiContainerTrait

 		
 Hook Trait

 		
 Introduction

 		
 Hook Spots

 		
 Adding callbacks

 		
 Short way to describe callback method

 		
 Callback execution order

 		
 Arguments

 		
 Breaking Hooks

 		
 Using references in hooks

 		
 Checking if hook has callbacks

 		
 Dynamic Method Trait

 		
 Introduction

 		
 Global Methods

 		
 Dynamic Method Arguments

 		
 Properties

 		
 Methods

 		
 Modelable Trait

 		
 Introduction

 		
 Properties

 		
 Methods

 		
 Debug Trait

 		
 Introduction

 		
 Compatibility with PSR-3

 		
 Debug

 		
 Log

 		
 debugTraceChange

 		
 Properties

 		
 Methods

 		
 Writing ATK Docs

 		
 Writing ATK Documentation

 		
 Building and Testing Documentation

 		
 Integrating PhpStorm

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

